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Google says there are a lot of workflow tools 
available …. 

2,870 results 
237,000 results for “workflow tools” 

MapReduce/Hadoop 



Tigres: Design templates for common scientific 
workflow patterns 

"LightSrc" 
Domain 
templates

Base Tigres 
templates
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Workflow Library: Implement templates as a library in an 
existing language 
Basic Templates: Sequence, Parallel, Split, Merge 



Key Aspects of Tigres  

•  Targeted for large-scale data-intensive workflows 
–  Motivated by “MapReduce” model 

•  Library model embedded in existing languages such 
as Python and C 
–  “Extend current scripting/programming tools” 
–  API-based, embedded in code 

•  Light-weight execution framework 
–  “As easy to run as an MPI program on an HPC resource” 
–  No persistent services 

•  User-Centered Design Process 
–  Get feedback from user continuously  
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Tigres Templates 
 

Sequence ( name, task_array, 
input_array )  
 
Parallel ( name, task_array, 
input_array ) 
  
Split ( name, split_task, 
split_input_values, task_array, 
task_array_in ) 
 
Merge ( name, task_array, 
input_array, merge_task, 
merge_input_values)  



Tigres: Research Scope 

•  Programming interface to support workflows 
•  Optimize execution semantics on HPC 

systems 
•  Provenance and monitoring at scale  
•  Usability processes for API design and 

development 



Develop 

Run Feedback 

Design 

Model/existing codes 
translated to a Tigres 

program  

start(name=“MyWorkflow”) 
... 
split(name=“Split”...) 
merge(name=“Merge”...) 
... 
end() 

Tigres provides a “library” to support the 
iterative workflow development 
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Tigres data model 



Develop 

Run Feedback 

Design 

May be a partial  
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Program state 
available during and 
after runs 

Tigres provides a “library” to support the 
iterative workflow development 
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Failure Recovery from logs 

Monitoring 
API 

Execution 
logs 

Workflow  
Recovery 
  

Workflow 
recovery activated 



Parallel Sequential Performance Improvement 

Template Time: ~11%         
Resource Usage/Wastage: ~65% 
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Requirements 
Gathering 

Design 

Develop & Test   

Release 

Traditional 
Software Development 

Construct a 
hypothesis  

BUILD: Design the 
experiment 

MEASURE:Test 
the hypothesis 

LEARN:  Analyze 
data and prove or 

disprove 
hypothesis  

Research 

Learning about the user as part of our process 
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MEASURE:Test 
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LEARN:  Analyze 
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Research 

Learning about the user as part of our R&D 

Build software 
(what you want to 

learn) 

Test and measure 
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Adapted from: 
The Lean 

Startup Method 



User-Centered Design Process [1/2]  

•  Usability studies provides semi-structured feedback 
from end-users 
–  Not the same as requirements gathering 
–  Limited literature on doing usability for APIs 

•  Round 1: Paper API & Google Docs Coding Session 
–  Goal: Nomenclature and desired features 
–  Topics from study: Concept understanding by user, 

Changes to Nomenclature, Support in C also important, 
Priorities for first prototype, Desktop to NERSC, Monitoring, 
Intermediate state management 

–  Priorities: Nomenclature, Monitoring, Dependency syntax, .. 
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User-Centered Design Process [2/2]  

•  Round 2a: Online Questionnaire after trying out 
Tigres  
+  67% said it was good and close to what they expected, 33% 

said it is definitely useful but needed to try it out 
+  20% thought it required more code than what they expected  
–  80% said minor learning difficulties 
–  40% said they would like more control  
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ParallelSequential 

Building Blocks 

•  Round 2b: Interview and Post-task 
walkthrough  
-  Support for nested templates 
-  Investigation of running loops in Tigres 
-  Difficulties with PREVIOUS syntax (including 

missing documentation) 



Extensive Evaluation using Scientific and 
Synthetic Workflows 
•  BLAST 

–  Bioinformatics workflow  
–  One Parallel and two Sequences 
–  120 to 1800 tasks, Python executable 

•  CAMP  
–  Satellite image re-projection 
–  Two parallel and one sequence 
–  ~6000 tasks, Python executable 

•  Montage  
–  Astronomical Image Mosaic Engine 
–  Three Parallel templates and two Sequences 
–  C executables 

•  SNe Simulation 
–  Cosmology  
–  Python executable and functions 

Create
Universe

Create
SNe

C
re

at
e

Li
gh

t C
ur

ve
s

C
re

at
e

Li
gh

t C
ur

ve
s

C
re

at
e

Li
gh

t C
ur

ve
s

C
re

at
e

Li
gh

t C
ur

ve
s

C
re

at
e

Li
gh

t C
ur

ve
s

C
re

at
e

Li
gh

t C
ur

ve
s

Fi
t

Li
gh

t C
ur

ve
s

Fi
t

Li
gh

t C
ur

ve
s

Fi
t

Li
gh

t C
ur

ve
s

Fi
t

Li
gh

t C
ur

ve
s

Fi
t

Li
gh

t C
ur

ve
s

Fi
t

Li
gh

t C
ur

ve
s

Fit
Cosmology

(not completed 
because scientific 

algorithms are still be 
worked on)

SNe workflow 



Experiences 

•  Setup of workflows is still tedious 
-  libraries, diversity of resources  

•  Is portability from desktop to HPC achievable?   
-  Code is not always developed for HPC 
-  Queues policies and file system etc need to be understood  
-  Understand characteristics for performance optimization 

•  Achieving efficiency is not trivial 
-  Need to account for performance variability  
-  Python setup performance ( now improved at NERSC) 
-  Different file systems’ performance needs to be considered  
-  [ How our allocation “BLAST”-ed out ] 



Summary of Workflow Status [ @ Tigres Level]  

Workflow Status Count
Interrupted (Task failures in 

log) 18 1%
Interrupted (No failures 

recorded) 81 4%
Never started  169 9%

Failed (finished with failed 
state) 139 7%

Success 1575 79%
Total 1982



Summary of Job Status [ @ Job Script Level ] 

Some Jobs have more than one workflow. 1982 
workflows were submitted in 1160 jobs  



Main Error Error Detail HPC Jobs % HPC Jobs

Killed Job  Job-level  95 8%

  Terminated ( Something or someone)  23 2%

  Wall-time Exceeded 72 6%

Task Failure   Workflow-level 137 12%

  Missing Files 104 9%

  Error Opening File 6 1%

  HPC Config 5 1%

  FTP Error 10 1%

  Other Errors 12 1%

User Error  Both levels 13 1%
HPC Error  Job-level  78 7%

  Broken Pipe 6 <1%

  IO Error 4 <1%

  Other 16 1%

  caught signal terminate 52  5%

Unknown  No  error file/output 68 6%



Tigres: Feature Set 
•  Iterative workflow development  

–  Simple data model 
–  Python API to compose and execute 
–  Use programming language constructs for complex logic flows 

•  Execution  
–  Existing application binaries, functions  
–  Seamlessly run on Desktops, Clusters and HPC  

•  Monitoring, Provenance 
–  Visual representation of graph that ran 
–  Extensive monitoring from workflow execution  
–  Support for adding user-level provenance  

•  Extensive documentation, examples and tutorials 
•  Recover failed workflows from logs (Limited)  
•  C API (Limited) 

Tigres data model 



Some Research Topics 

•  Active Code Generation  
•  Intelligent and Improved workflow management  

–  Can we pipe the intermediate data ?  ( 
–  Python backend is not optimal  
–  C++/MPI could help in some cases and not others 

•  Deployment Configuration: Tigres + Shifter  
•  Better failure detection and reporting 
•  Synergistic  

–  Workflow Scheduler at the Batch Queue Level  
–  Managing data space for science workflows 
–  Managing elastic environments for science workflows 



Use of Tigres  

•  CAMP – Re-projecting MODIS data for 2010-2014 
•  TAKO - image processing software, SNe simulation group  
•  ARES/BDC – analyses pipelines for processing background 

radiation data 
•  Earth system simulation  
•  Inria Associated Team ( frontend for HOCL)  

Tigres 



Lessons Learned: Template Interface  
•  Python interface was very attractive for many of our 

early users  
•  Template interface was also attractive for simple DAGs  

–  Is there a specific way I should split my workflow into 
templates?  

–  Very few cases where they had unusual DAGs  
•  Nested templates was a key feature request 

–  ParallelSequential was a good example 
–  General nested template needs more  

•  Template/Interpreted language – no global view of 
DAG and other programmatic modifications to data.  



Lessons Learned: Straddling the Research and 
Software Development Boundary  

+ User-Centered design process enabled us to receive 
valuable “early” feedback 

+  The user-centered design process forced us to 
address S/W development lifecycle in a research 
project early 

?  Users wanted access to software which presents 
challenges in a research project.  

?  Need to reduce the time in the cycle of build, measure, 
learn and balance the cycles of learning about the user 
and CS research 

 



Looking forward … 
•  Tigres provides a good foundational tool for many 

users and experiments  
•  Developing and communicating best practices  

–  User-centered approaches for software/middleware 
development  

–  Lot of what we have learned are lessons for users outside of 
workflow tool (e.g., Python is not suited for all tasks)  

•  Near-term research 
–  How are we going to support programming “data” workflows? 
–  Human-in-the loop issues  

•  Long-term: “workflow tools” need to disappear  
–  More support at infrastructure level and application 

programming models?  



More Information 

•  This work is supported by the DOE Office of Science 
(Office of Advanced Scientific Computing Research) 

•  Tigres Team 
–  Lavanya Ramakrishnan, Valerie Hendrix, Sarah Poon, James 

Fox, Gary Kushner 
–  Ryan Rodriguez, Daniel Gunter, Gilberto Pastorello, Deb 

Agarwal 
 
•  Lramakrishnan@lbl.gov 

•  http://tigres.lbl.gov  
 
 



Tigres C 

•  Current Implementation  
–  C API with a Python backend 
–  Macros used to define functions  
–  The fully expressivity of PREVIOUS is not implemented  

•  Food for thought 
–  Performance of Python 
–  Parallelization of functions and Deserialization of data 
–  C does not posses a runtime type introspection  (Do you 

manage to keep consistency with Python?)   
–  Usability - “Pythonic”/C-like code  


